Stochastic optimization of staffing for multiskill call centers
Thesis or Dissertation
2019-12 (degree granted: 2020-03-25)
Author(s)
Level
DoctoralDiscipline
InformatiqueKeywords
- call center
- staffing optimization
- simulation
- stochastic programming
- chance constraint
- sample average approximation
- Benders decomposition
- nonlinear regression
- Centre d’appels
- Optimisation des effectifs
- Programmation stochastique
- Contraintes probabilistes
- Approximation par moyenne échantillonnale
- Décomposition de Benders
- Régression non linéaire
- Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Abstract(s)
Dans cette thèse, nous étudions le problème d’optimisation des effectifs dans les centres d’appels, dans lequel nous visons à minimiser les coûts d’exploitation tout en offrant aux clients une qualité de service (QoS) élevée. Nous introduisons également l'utilisation de contraintes probabilistes qui exigent que la qualité de service soit satisfaite avec une probabilité donnée. Ces contraintes sont adéquates dans le cas où la performance est mesurée sur un court intervalle de temps, car les mesures de QoS sont des variables aléatoires sur une période donnée. Les problèmes de personnel proposés sont difficiles en raison de l'absence de forme analytique pour les contraintes probabilistes et doivent être approximées par simulation. En outre, les fonctions QoS sont généralement non linéaires et non convexes. Nous considérons les problèmes d’affectation personnel dans différents contextes et étudions les modèles proposés tant du point de vue théorique que pratique. Les méthodologies développées sont générales, en ce sens qu'elles peuvent être adaptées et appliquées à d'autres problèmes de décision dans les systèmes de files d'attente.
La thèse comprend trois articles traitant de différents défis en matière de modélisation et de résolution de problèmes d'optimisation d’affectation personnel dans les centres d'appels à compétences multiples. Les premier et deuxième article concernent un problème d'optimisation d'affectation de personnel en deux étapes sous l'incertitude. Alors que dans le second, nous étudions un modèle général de programmation stochastique discrète en deux étapes pour fournir une garantie théorique de la consistance de l'approximation par moyenne échantillonnale (SAA) lorsque la taille des échantillons tend vers l'infini, le troisième applique l'approche du SAA pour résoudre le problème d’optimisation d'affectation de personnel en deux étapes avec les taux d’arrivée incertain. Les deux articles indiquent la viabilité de l'approche SAA dans notre contexte, tant du point de vue théorique que pratique.
Pour être plus précis, dans le premier article, nous considérons un problème stochastique discret général en deux étapes avec des contraintes en espérance. Nous formulons un problème SAA avec échantillonnage imbriqué et nous montrons que, sous certaines hypothèses satisfaites dans les exemples de centres d'appels, il est possible d'obtenir les solutions optimales du problème initial en résolvant son SAA avec des échantillons suffisamment grands. De plus, nous montrons que la probabilité que la solution optimale du problème de l’échantillon soit une solution optimale du problème initial tend vers un de manière exponentielle au fur et à mesure que nous augmentons la taille des échantillons. Ces résultats théoriques sont importants, non seulement pour les applications de centre d'appels, mais également pour d'autres problèmes de prise de décision avec des variables de décision discrètes.
Le deuxième article concerne les méthodes de résolution d'un problème d'affectation en personnel en deux étapes sous incertitude du taux d'arrivée. Le problème SAA étant coûteux à résoudre lorsque le nombre de scénarios est important. En effet, pour chaque scénario, il est nécessaire d'effectuer une simulation pour estimer les contraintes de QoS. Nous développons un algorithme combinant simulation, génération de coupes, renforcement de coupes et décomposition de Benders pour résoudre le problème SAA. Nous montrons l'efficacité de l'approche, en particulier lorsque le nombre de scénarios est grand.
Dans le dernier article, nous examinons les problèmes de contraintes en probabilité sur les mesures de niveau de service. Notre méthodologie proposée dans cet article est motivée par le fait que les fonctions de QoS affichent généralement des courbes en S et peuvent être bien approximées par des fonctions sigmoïdes appropriées. Sur la base de cette idée, nous avons développé une nouvelle approche combinant la régression non linéaire, la simulation et la recherche locale par région de confiance pour résoudre efficacement les problèmes de personnel à grande échelle de manière viable. L’avantage principal de cette approche est que la procédure d’optimisation peut être formulée comme une séquence de simulations et de résolutions de problèmes de programmation linéaire. Les résultats numériques basés sur des exemples réels de centres d'appels montrent l'efficacité pratique de notre approche.
Les méthodologies développées dans cette thèse peuvent être appliquées dans de nombreux autres contextes, par exemple les problèmes de personnel et de planification dans d'autres systèmes basés sur des files d'attente avec d'autres types de contraintes de QoS. Celles-ci soulèvent également plusieurs axes de recherche qu'il pourrait être intéressant d'étudier. Par exemple, une approche de regroupement de scénarios pour atténuer le coût des modèles d'affectation en deux étapes, ou une version d'optimisation robuste en distribution pour mieux gérer l'incertitude des données. In this thesis, we study the staffing optimization problem in multiskill call centers, in which we aim at minimizing the operating cost while delivering a high quality of service (QoS) to customers. We also introduce the use of chance constraints which require that the QoSs are met with a given probability. These constraints are adequate in the case when the performance is measured over a short time interval as QoS measures are random variables in a given time period. The proposed staffing problems are challenging in the sense that the stochastic constraints have no-closed forms and need to be approximated by simulation. In addition, the QoS functions are typically non-linear and non-convex. We consider
staffing optimization problems in different settings and study the proposed models in both theoretical and practical aspects. The methodologies developed are general, in the sense that they can be adapted and applied to other staffing/scheduling problems in queuing-based systems.
The thesis consists of three articles dealing with different challenges in modeling and solving staffing optimization problems in multiskill call centers.
The first and second articles concern a two-stage staffing optimization problem under uncertainty. While in the first one, we study a general two-stage discrete stochastic programming model to provide a theoretical guarantee for the consistency of the sample average approximation (SAA) when the sample sizes go to infinity, the second one applies the SAA approach to solve the two-stage staffing optimization problem under arrival rate uncertainty. Both papers indicate the viability of the SAA approach in our context, in both theoretical and practical aspects.
To be more precise, in the first article, we consider a general two-stage discrete stochastic problem with expected value constraints. We formulate
its SAA with nested sampling. We show that under some assumptions that hold in call center examples, one can obtain the optimal solutions of the original problem by solving its SAA with large enough sample sizes. Moreover, we show that the probability that the optimal solution of the sample problem is an optimal solution of the original problem, approaches one exponentially fast as we increase the sample sizes. These theoretical findings are important, not only for call center applications, but also for other decision-making problems with discrete decision variables.
The second article concerns solution methods to solve a two-stage staffing problem under arrival rate uncertainty. It is motivated by the fact that the SAA version of the two-stage staffing problem becomes expensive to solve with a large number of scenarios, as for each scenario, one needs to use simulation to approximate the QoS constraints. We develop an algorithm that combines simulation, cut generation, cut strengthening and Benders decomposition to solve the SAA problem. We show the efficiency of the approach, especially when the number of scenarios is large.
In the last article, we consider problems with chance constraints on the service level measures. Our methodology proposed in this article is motivated by the fact that the QoS functions generally display ``S-shape'' curves and might be well approximated by appropriate sigmoid functions. Based on this idea, we develop a novel approach that combines non-linear regression, simulation and trust region local search to efficiently solve large-scale staffing problems in a viable way. The main advantage of the approach is that the optimization procedure can be formulated as a sequence of steps of performing simulation and solving linear programming models. Numerical results based on real-life call center examples show the practical viability of our approach.
The methodologies developed in this thesis can be applied in many other settings, e.g., staffing and scheduling problems in other queuing-based systems with other types of QoS constraints. These also raise several research directions that might be interesting to investigate. For examples, a clustering approach to mitigate the expensiveness of the two-stage staffing models, or a distributionally robust optimization version to better deal with data uncertainty.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.