Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature
dc.contributor.author | Haustein, Stefanie | |
dc.contributor.author | Peters, Isabella | |
dc.contributor.author | Sugimoto, Cassidy R. | |
dc.contributor.author | Thelwall, Mike | |
dc.contributor.author | Larivière, Vincent | |
dc.date.accessioned | 2020-04-08T17:48:38Z | |
dc.date.available | NO_RESTRICTION | fr |
dc.date.available | 2020-04-08T17:48:38Z | |
dc.date.issued | 2013-11-26 | |
dc.identifier.uri | http://hdl.handle.net/1866/23229 | |
dc.publisher | Association for information science and technology | fr |
dc.subject | Scientometrics | fr |
dc.subject | Citation analysis | fr |
dc.subject | Webometrics | fr |
dc.title | Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature | fr |
dc.type | Article | fr |
dc.contributor.affiliation | Université de Montréal. Faculté des arts et des sciences. École de bibliothéconomie et des sciences de l'information | fr |
dc.identifier.doi | 10.1002/asi.23101 | |
dcterms.abstract | Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social‐media‐based metrics. | fr |
dcterms.isPartOf | urn:ISSN:2330-1635 | fr |
dcterms.isPartOf | urn:ISSN: 2330-1643 | fr |
dcterms.language | eng | fr |
UdeM.ReferenceFournieParDeposant | Tweeting biomedicine: an analysis of tweets and citations in the biomedical literature Haustein, S., Peters, I., Thelwall, M., Sugimoto, C.R., Larivière, V. (2014). Tweeting biomedicine: an analysis of tweets and citations in the biomedical literature. Journal of the Association for Information Science and Technology, 65(4): 656–669. | fr |
UdeM.VersionRioxx | Version acceptée / Accepted Manuscript | fr |
oaire.citationTitle | Journal of the association for information science and technology | |
oaire.citationVolume | 65 | |
oaire.citationIssue | 4 | |
oaire.citationStartPage | 656 | |
oaire.citationEndPage | 669 |
Fichier·s constituant ce document
Ce document figure dans la ou les collections suivantes
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.