Show item record

Estimating treatment importance in multidrug-resistant tuberculosis using Targeted Learning : an observational individual patient data network meta-analysis

dc.contributor.authorWang, Guanbo
dc.contributor.authorSchnitzer, Mireille
dc.contributor.authorMenzies, Dick
dc.contributor.authorViiklepp, Piret
dc.contributor.authorHoltz, Timothy H.
dc.contributor.authorBenedetti, Andrea
dc.date.accessioned2020-02-28T16:20:25Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2020-02-28T16:20:25Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/1866/23108
dc.publisherWileyfr
dc.subjectDouble robustnessfr
dc.subjectIndividual patient datafr
dc.subjectMeta-analysisfr
dc.subjectMultidrug-resistant tuberculosisfr
dc.subjectTargeted maximum likelihood estimationfr
dc.subjectTransportabilityfr
dc.subjectTreatment importancefr
dc.titleEstimating treatment importance in multidrug-resistant tuberculosis using Targeted Learning : an observational individual patient data network meta-analysisfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de pharmaciefr
dc.contributor.affiliationUniversité de Montréal. École de santé publique. Département de médecine sociale et préventivefr
dc.identifier.doi10.1111/biom.13210
dcterms.abstractPersons with multidrug‐resistant tuberculosis (MDR‐TB) have a disease resulting from a strain of tuberculosis (TB) that does not respond to at least isoniazid and rifampicin, the two most effective anti‐TB drugs. MDR‐TB is always treated with multiple antimicrobial agents. Our data consist of individual patient data from 31 international observational studies with varying prescription practices, access to medications, and distributions of antibiotic resistance. In this study, we develop identifiability criteria for the estimation of a global treatment importance metric in the context where not all medications are observed in all studies. With stronger causal assumptions, this treatment importance metric can be interpreted as the effect of adding a medication to the existing treatments. We then use this metric to rank 15 observed antimicrobial agents in terms of their estimated add‐on value. Using the concept of transportability, we propose an implementation of targeted maximum likelihood estimation, a doubly robust and locally efficient plug‐in estimator, to estimate the treatment importance metric. A clustered sandwich estimator is adopted to compute variance estimates and produce confidence intervals. Simulation studies are conducted to assess the performance of our estimator, verify the double robustness property, and assess the appropriateness of the variance estimation approach.fr
dcterms.alternativeEstimating MDR-TB treatment importance using TMLEfr
dcterms.isPartOfurn:ISSN:0006-341Xfr
dcterms.isPartOfurn:ISSN:1541-0420fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposanthttps://doi.org/10.1111/biom.13210fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleBiometrics


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.