Afficher la notice

dc.contributor.advisorAmarante, Massimiliano
dc.contributor.authorBélair, Justin
dc.date.accessioned2019-12-09T18:42:25Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2019-12-09T18:42:25Z
dc.date.issued2019-10-30
dc.date.submitted2019-06
dc.identifier.urihttp://hdl.handle.net/1866/22747
dc.subjectOptimal Transportfr
dc.subjectDisintegration of Measuresfr
dc.subjectOptimizationfr
dc.subjectDualityfr
dc.subjectTransport Optimalfr
dc.subjectDualitéfr
dc.subjectOptimisationfr
dc.subjectDécomposition de mesuresfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleDisintegration methods in the optimal transport problemfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineSciences économiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractCe travail consiste à expliciter des techniques applicables à certaines classes de problèmes de transport (Optimal Transport). En effet, le problème de transport est une formulation abstraite d'un problème d'optimisation qui s'étend aujourd'hui à une panoplie d'applications dans des domaines très diversifiés (météorologie, astrophysique, traitement d'images, et de multiples autres). Ainsi, la pertinence des méthodes ici décrites s'étend à beaucoup plus que des problèmes mathématiques. En particulier, ce travail cherche à montrer comment certains théorèmes qui sont habituellement présentés comme des problèmes combinatoires qui valent sur des ensembles finis peuvent être généralisés à des ensembles infinis à l'aides d'outils de théorie de la mesure: le théorème de décomposition de mesures. Ainsi, le domain d'application concret de ces techniques s'en trouve grandement élargi au moyen d'une plus grande abstraction mathématique.fr
dcterms.abstractThe present work hopes to illustrate certain techniques that can be applied to certain classes of Optimal Transport problems. Today, the Optimal Trans- port problem has come to be a mathematical formulation of very diverse problems (meteorology, astrophysics, image processing, etc.) Thus, the per- tinence of the methods described is much larger than mathematical problems. In particular, it is shown how certain theorems that are usually approached with combinatorial tools over nite sets can be extended by measure-theoretic tools to in nite sets. We see that this higher level of abstraction gives rise to more powerful and widely-applicable tools, in very concrete problems.fr
dcterms.languageengfr


Fichier·s constituant ce document

Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.