Estimation robuste en population finie
dc.contributor.advisor | Haziza, David | |
dc.contributor.author | Seydi, Aliou | |
dc.date.accessioned | 2019-06-20T18:33:58Z | |
dc.date.available | NO_RESTRICTION | fr |
dc.date.available | 2019-06-20T18:33:58Z | |
dc.date.issued | 2019-03-13 | |
dc.date.submitted | 2018-09 | |
dc.identifier.uri | http://hdl.handle.net/1866/22166 | |
dc.subject | biais conditionnel | fr |
dc.subject | unité influente | fr |
dc.subject | estimation robuste | fr |
dc.subject | seuil de robustesse | fr |
dc.subject | conditional bias | fr |
dc.subject | influential unit | fr |
dc.subject | robust estimation | fr |
dc.subject | tuning constant | fr |
dc.subject.other | Mathematics / Mathématiques (UMI : 0405) | fr |
dc.title | Estimation robuste en population finie | fr |
dc.type | Thèse ou mémoire / Thesis or Dissertation | |
etd.degree.discipline | Statistique | fr |
etd.degree.grantor | Université de Montréal | fr |
etd.degree.level | Maîtrise / Master's | fr |
etd.degree.name | M. Sc. | fr |
dcterms.abstract | Une unité est considérée comme influente lorsque son inclusion ou son exclusion de l'échantillon a un effet important sur l'erreur due à l'échantillonnage. La présence d'unités influentes dans un échantillon rend les estimateurs classiques instables. Beaumont et al. (2013) ont montré que le biais conditionnel est un bon outil qui permet de mesurer l'influence d'une unité. Ils ont développé un estimateur robuste basé sur le biais conditionnel. Cet estimateur dépend d'une constante appelée "seuil de robustesse" déterminée de manière à minimiser le plus grand biais conditionnel estimé de l'estimateur robuste. Le but de ce travail est d'étudier d'autres critères permettant d'obtenir des estimateurs robustes ayant de bonnes propriétés en termes d'erreur quadratique moyenne. | fr |
dcterms.abstract | A unit is considered influential when its inclusion or exclusion from the sample has a significant effect on the sampling error. The presence of influential units in a sample makes classical estimators unstable. Beaumont et al. (2013) have shown that conditional bias is a good tool for measuring the influence of a unit. They developed a robust estimator based on conditional bias. The proposed estimator depends on a constant, called tuning constant, which is determined by minimizing the largest conditional bias of the robust estimator. The purpose of this work is to study other criteria for obtaining robust estimators with good properties in terms of mean square error. | fr |
dcterms.language | fra | fr |
Files in this item
This item appears in the following Collection(s)
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.