Difference target propagation
Thèse ou mémoire
2018-07 (octroi du grade: 2018-10-18)
Auteur·e·s
Directeur·trice·s de recherche
Cycle d'études
MaîtriseProgramme
InformatiqueMots-clés
- Neural networks
- Machine learning
- Deep learning
- Representation learning
- Optimization
- Biological plausibility,
- Learning rule
- Backpropagation
- Target propagation
- Réseaux de neurones
- Apprentissage automatique
- Optimisation
- Régle d’apprentissage
- Régle d’apprentissage biologiquement plausible
- Rétropropagation
- Applied Sciences - Artificial Intelligence / Sciences appliqués et technologie - Intelligence artificielle (UMI : 0800)
Résumé·s
Backpropagation has been the workhorse of recent successes of deep learning but it relies on infinitesimal effects (partial derivatives) in order to perform credit assignment. This could become a serious issue as one considers deeper and more non-linear functions, e.g., consider the extreme case of non-linearity where the relation between parameters and cost is actually discrete.
Inspired by the biological implausibility of Backpropagation, this thesis proposes a novel approach,
Target Propagation. The main idea is to compute targets rather than gradients, at each layer in which feedforward and feedback networks form Auto-Encoders.
We show that a linear correction for the imperfectness of the Auto-Encoders, called Difference Target Propagation is very effective to make Target Propagation actually work, leading to results comparable to Backpropagation for deep networks with discrete and continuous units, Denoising Auto-Encoders and achieving state of the art for stochastic networks.
In Chapters 1, we introduce several classical learning rules in Deep Neural Networks, including Backpropagation and more biological plausible learning rules. In Chapters 2 and 3, we introduce a novel approach, Target Propagation, more biological plausible learning rule than Backpropagation. In addition, we show that Target Propagation is comparable to Backpropagation in Deep Neural Networks. L'algorithme de r etropropagation a et e le cheval de bataille du succ es r ecent
de l'apprentissage profond, mais elle s'appuie sur des e ets in nit esimaux (d eriv ees
partielles) a n d'e ectuer l'attribution de cr edit. Cela pourrait devenir un probl eme
s erieux si l'on consid ere des fonctions plus profondes et plus non lin eaires, avec a
l'extr^eme la non-lin earit e o u la relation entre les param etres et le co^ut est r eellement
discr ete.
Inspir ee par la pr esum ee invraisemblance biologique de la r etropropagation,
cette th ese propose une nouvelle approche, Target Propagation. L'id ee principale
est de calculer des cibles plut^ot que des gradients a chaque couche, en faisant en
sorte que chaque paire de couches successive forme un auto-encodeur.
Nous montrons qu'une correction lin eaire, appel ee Di erence Target Propaga-
tion, est tr es e cace, conduisant a des r esultats comparables a la r etropropagation
pour les r eseaux profonds avec des unit es discr etes et continues et des auto- encodeurs
et atteignant l' etat de l'art pour les r eseaux stochastiques.
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.