Vers une plateforme holistique de protection de la vie privée dans les services géodépendants
Thesis or Dissertation
2018-04 (degree granted: 2018-10-18)
Advisor(s)
Level
DoctoralDiscipline
InformatiqueKeywords
- Services géodépendants
- Mécanisme de préservation de la confidentialité de localisation
- Mesure de confiance
- Quantification de risques
- Position jumelle
- Position indicatrice
- Réseaux pair-à-pair
- Transfert inconscient
- Information mutuelle
- Logique floue
- Location-based services
- Location privacy
- Location privacy-preserving mechanism
- Risk quantification
- Trust measurement
- Twin positions
- Telltale positions
- P2P networks
- Oblivious transfer
- Mutual information
- Fuzzy logic
- Communications and the Arts - Information Science / Communications et les arts - Sciences de l’information (UMI : 0723)
Abstract(s)
Les services géodépendants (LBS : Location-Based Services) sont présents dans la plupart de nos activités quotidiennes, ils représentent l’ensemble des services en ligne qui fournissent des informations basées sur la géolocalisation des individus. On peut les retrouver dans plusieurs domaines tels que les soins médicaux, le divertissement, le transport, et de nombreuses autres activités. En outre, avec leur présence dans presque toutes les tâches quotidiennes, leur utilité ne peut être négligée, ainsi que leur impact sur la façon dont les données des individus sont traitées n’est plus la même. De plus, avec la croissance du nombre de propriétaires de dispositifs mobiles, il est devenu plus facile de localiser un individu, rendant ainsi presque inévitables les problèmes liés à la confidentialité. Par conséquent, des solutions plus sévères sont fortement nécessaires afin de gérer les problèmes de confidentialité et de conserver l’utilité de LBS. Nous présentons dans cette thèse une recherche qui porte sur la protection de la vie privée des utilisateurs dans un LBS tout en gardant un maximum d’utilité des services. Autre que l’état de l’art et les fondements théoriques, ce travail est divisé en trois parties principales, chacune d’elles décrit un ensemble des composants connexes de la plateforme proposée, nommée Deloc.
En conclusion, nous proposons une plateforme collaborative de protection de la confidentialité des utilisateurs LBS, qui est à la fois efficace, performante, et qui surtout n’affecte pas l’utilité estimée de l’utilisation d’un LBS donné. Location-Based Services (LBS) are present in most of our daily activities, and they repre
sent all online services used to provide information based on the location of individuals.
These services can be found in several fields such as healthcare, entertainment, transportation,
and many other daily activities. Besides, along with their presence in almost
all daily tasks, their utility cannot be ignored, and as a result, their impact on how individuals’
data are processed is no longer the same.
With smartphone ownership growth, it has become easier to locate an individual,
and privacy issues have become almost inescapable. Hence, more severe solutions are
strongly required to handle privacy issues while keeping the utility of LBS.
We present in this thesis a research work about protecting the privacy of users in an
LBS while keeping maximum utility of the service. In addition to the state of the art
and the theoretical background, this work is divided into three main parts when each one
describes a set of related components of the proposed framework, called Deloc.
We present in this thesis a research into about privacy protection in LBSs while
maintaining the maximum utility of these services. In addition to the state of the art and
the theoretical background, this work is divided into three main parts, where each one
describes a set of related components of the proposed framework named Deloc.
• Delegation concept. We propose in this part the main concept behind this re
search. The goal is to propose a collaborative mechanism where each user participates
in the protection of other users without the need for transforming his geographical
coordinates, nor losing the utility of the service. We also evaluate the
concept on data issued from real-world users in a finely simulated environment
with tuneable parameters, and we demonstrate its high guarantees of privacy, efficiency,
and utility facing most of the current LBS applications.
• Quantification of risks and trust. This part is based on the fact that the dependence of delegation concept on the LBS users may imply privacy issues. This
part of the paper discusses two models of quantification and measurement of risks
and trust in the context of LBS. First, we propose a model based on the theory of
mutual information that is used to assess the risks associated with the use of the
delegation concept. Then we discuss a model based on Markov chains that helps
to estimate the level of trust for each of the collaborators. We also discuss the
applicability of both models and their theoretical and empirical validation.
• Privacy Metric for Collaborative Systems. The lack of a metric designed for
collaborative systems is the main motivation behind this part. We discuss our
proposal for a privacy metric based on the theory of fuzzy sets. We propose three
models that each one of them deals with a subset of Delocprivacy requirements.
The attacker, the privacy, and the utility model are the three models used to define
the privacy metric named d-fuzziness. We also discuss the validation of the metric,
and its measurement efficiency in the case of collaborative mechanisms, especially
Deloc.
In conclusion, we propose a collaborative location privacy-preserving framework,
which is at the same time efficient, powerful, and which does not affect the estimated
utility of using LBSs.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.