CONGÉ DES FÊTES 2024 : Veuillez noter qu'il n'y aura pas de suivi des dépôts des thèses, mémoires et travaux étudiants après le 23 décembre 2024. Retour aux délais réguliers dès le 6 janvier 2025. ------------- ❄⛄❄ ------------- HOLIDAY BREAK 2024: Please note that there will be no follow-up on thesis, dissertations and student papers submissions after December 23, 2024. Regular deadlines will resume on January 6, 2025.
Concentration des fonctions propres de Steklov sur les composantes connexes de la frontière
dc.contributor.advisor | Polterovich, Iosif | |
dc.contributor.author | Martineau, Joanie | |
dc.date.accessioned | 2018-05-31T13:57:50Z | |
dc.date.available | NO_RESTRICTION | fr |
dc.date.available | 2018-05-31T13:57:50Z | |
dc.date.issued | 2018-03-21 | |
dc.date.submitted | 2017-09 | |
dc.identifier.uri | http://hdl.handle.net/1866/20207 | |
dc.subject | Pseudo-différentiel | fr |
dc.subject | Spectre | fr |
dc.subject | Steklov | fr |
dc.subject | Concentration | fr |
dc.subject | Frontière | fr |
dc.subject | Pseudodifferential | fr |
dc.subject | Spectrum | fr |
dc.subject | Boundary | fr |
dc.subject.other | Mathematics / Mathématiques (UMI : 0405) | fr |
dc.title | Concentration des fonctions propres de Steklov sur les composantes connexes de la frontière | fr |
dc.type | Thèse ou mémoire / Thesis or Dissertation | |
etd.degree.discipline | Mathématiques | fr |
etd.degree.grantor | Université de Montréal | fr |
etd.degree.level | Maîtrise / Master's | fr |
etd.degree.name | M. Sc. | fr |
dcterms.abstract | L’opérateur de Steklov est un opérateur pseudo-différentiel elliptique d’ordre 1. Il est connu que les valeurs propres de Steklov d’une surface ne dépendent asymptotiquement que des longueurs des composantes connexes de la frontière. Dans ce mémoire, on montre qu’asymptotiquement, les fonctions propres de Steklov ne se concentrent que sur une composante connexe de la frontière si aucun des rapports entre les longueurs des composantes de la frontière n’est finement approximable par une suite rationnelle. | fr |
dcterms.abstract | The Steklov operator on a Riemannian manifold with boundary is an elliptic pseudodifferential operator of order one. It is known that the asymptotics of the Steklov spectrum of a surface is determined, up to a very small error, by the lengths of the connected components of the boundary. In this thesis, we focus on the asymptotic properties of Steklov eigenfunctions on surfaces. In particular, we show that if all the ratios between the lengths of the connected components of the boundary are irrational numbers not admitting fast approximation by rationals, then each high energy eigenfunction concentrates along a single boundary component. | fr |
dcterms.language | fra | fr |
Files in this item
This item appears in the following Collection(s)
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.