CONGÉ DES FÊTES 2024 : Veuillez noter qu'il n'y aura pas de suivi des dépôts des thèses, mémoires et travaux étudiants après le 23 décembre 2024. Retour aux délais réguliers dès le 6 janvier 2025. ------------- ❄⛄❄ ------------- HOLIDAY BREAK 2024: Please note that there will be no follow-up on thesis, dissertations and student papers submissions after December 23, 2024. Regular deadlines will resume on January 6, 2025.

Show item record

dc.contributor.advisorPolterovich, Iosif
dc.contributor.authorMartineau, Joanie
dc.date.accessioned2018-05-31T13:57:50Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2018-05-31T13:57:50Z
dc.date.issued2018-03-21
dc.date.submitted2017-09
dc.identifier.urihttp://hdl.handle.net/1866/20207
dc.subjectPseudo-différentielfr
dc.subjectSpectrefr
dc.subjectSteklovfr
dc.subjectConcentrationfr
dc.subjectFrontièrefr
dc.subjectPseudodifferentialfr
dc.subjectSpectrumfr
dc.subjectBoundaryfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleConcentration des fonctions propres de Steklov sur les composantes connexes de la frontièrefr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractL’opérateur de Steklov est un opérateur pseudo-différentiel elliptique d’ordre 1. Il est connu que les valeurs propres de Steklov d’une surface ne dépendent asymptotiquement que des longueurs des composantes connexes de la frontière. Dans ce mémoire, on montre qu’asymptotiquement, les fonctions propres de Steklov ne se concentrent que sur une composante connexe de la frontière si aucun des rapports entre les longueurs des composantes de la frontière n’est finement approximable par une suite rationnelle.fr
dcterms.abstractThe Steklov operator on a Riemannian manifold with boundary is an elliptic pseudodifferential operator of order one. It is known that the asymptotics of the Steklov spectrum of a surface is determined, up to a very small error, by the lengths of the connected components of the boundary. In this thesis, we focus on the asymptotic properties of Steklov eigenfunctions on surfaces. In particular, we show that if all the ratios between the lengths of the connected components of the boundary are irrational numbers not admitting fast approximation by rationals, then each high energy eigenfunction concentrates along a single boundary component.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.