Structured prediction and generative modeling using neural networks
Thèse ou mémoire
Résumé·s
Cette thèse traite de l'usage des Réseaux de Neurones pour modélisation de données séquentielles. La façon dont l'information a été ordonnée et structurée est cruciale pour la plupart des données. Les mots qui composent ce paragraphe en constituent un exemple. D'autres données de ce type incluent les données audio, visuelles et génomiques. La Prédiction Structurée est l'un des domaines traitant de la modélisation de ces données. Nous allons aussi présenter la Modélisation Générative, qui consiste à générer des points similaires aux données sur lesquelles le modèle a été entraîné.
Dans le chapitre 1, nous utiliserons des données clients afin d'expliquer les concepts et les outils de l'Apprentissage Automatique, incluant les algorithmes standards d'apprentissage ainsi que les choix de fonction de coût et de procédure d'optimisation. Nous donnerons ensuite les composantes fondamentales d'un Réseau de Neurones. Enfin, nous introduirons des concepts plus complexes tels que le partage de paramètres, les Réseaux Convolutionnels et les Réseaux Récurrents. Le reste du document, nous décrirons de plusieurs types de Réseaux de Neurones qui seront à la fois utiles pour la prédiction et la génération et leur application à des jeux de données audio, d'écriture manuelle et d'images.
Le chapitre 2 présentera le Réseau Neuronal Récurrent Variationnel (VRNN pour variational recurrent neural network). Le VRNN a été développé dans le but de générer des échantillons semblables aux exemples de la base d'apprentissage. Nous présenterons des modèles entraînées de manière non-supervisée afin de générer du texte manuscrites, des effets sonores et de la parole. Non seulement ces modèles prouvent leur capacité à apprendre les caractéristiques de chaque type de données mais établissent aussi un standard en terme de performance.
Dans le chapitre 3 sera présenté ReNet, un modèle récemment développé. ReNet utilise les sorties structurées d'un Réseau Neuronal Récurrent pour classifier des objets. Ce modèle atteint des performances compétitives sur plusieurs tâches de reconnaissance d'images, tout en utilisant une architecture conçue dès le départ pour de la Prédiction Structurée. Dans ce cas-ci, les résultats du modèle sont utilisés simplement pour de la classification mais des travaux suivants (non inclus ici) ont utilisé ce modèle pour de la Prédiction Structurée.
Enfin, au Chapitre 4 nous présentons les résultats récents non-publiés en génération acoustique. Dans un premier temps, nous fournissons les concepts musicaux et représentations numériques fondamentaux à la compréhension de notre approche et introduisons ensuite une base de référence et de nouveaux résultats de recherche avec notre modèle, RNN-MADE. Ensuite, nous introduirons le concept de synthèse vocale brute et discuterons de notre recherche en génération. Dans notre dernier Chapitre, nous présenterons enfin un résumé des résultats et proposerons de nouvelles pistes de recherche. In this thesis we utilize neural networks to effectively model data with sequential structure.
There are many forms of data for which both the order and the structure of the information is incredibly important. The words in this paragraph are one example of this type of data. Other examples include audio, images, and genomes. The work to effectively model this type of ordered data falls within the field of structured prediction. We also present generative models, which attempt to generate data that appears similar to the data which the model was trained on.
In Chapter 1, we provide an introduction to data and machine learning. First, we motivate the need for machine learning by describing an expert system built on a customer database. This leads to a discussion of common algorithms, losses, and optimization choices in machine learning. We then progress to describe the basic building blocks of neural networks. Finally, we add complexity to the models, discussing parameter sharing and convolutional and recurrent layers. In the remainder of the document, we discuss several types of neural networks which find common use in both prediction and generative modeling and present examples of their use with audio, handwriting, and images datasets.
In Chapter 2, we introduce a variational recurrent neural network (VRNN). Our VRNN is developed with to generate new sequential samples that resemble the dataset that is was trained on. We present models that learned in an unsupervised manner how to generate handwriting, sound effects, and human speech setting benchmarks in performance.
Chapter 3 shows a recently developed model called ReNet. In ReNet, intermediate structured outputs from recurrent neural networks are used for object classification. This model shows competitive performance on a number of image recognition tasks, while using an architecture designed to handle structured prediction. In this case, the final model output is only used for simple classification, but follow-up work has expanded to full structured prediction.
Lastly, in Chapter 4 we present recent unpublished experiments in sequential audio generation. First we provide background in musical concepts and digital representation which are fundamental to understanding our approach and then introduce a baseline and new research results using our model, RNN-MADE. Next we introduce the concept of raw speech synthesis and discuss our investigation into generation. In our final chapter, we present a brief summary of results and postulate future research directions.
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.