Résumé·s
L'apprentissage de l’algèbre abstraite semble correspondre, pour les étudiants de niveau universitaire ou collégial, à l'introduction d'une multitude de nouveautés conceptuelles. Afin de mieux comprendre les raisons du taux d'échec important mesuré dans cette discipline, nous avons tenté de dégager les obstacles ou les difficultés rencontrés et nous les avons regroupés en quatre familles. Sur la base d'un exemple tiré d'une séquence d'introduction à l'algèbre abstraite et des productions des étudiants, nous relèverons que, en plus de devoir franchir un cap dans le niveau d'abstraction requis, les étudiants sont, souvent pour la première fois de leur parcours, confrontés à une théorie axiomatique développée comme telle, à des définitions de nature essentielle dont l'emploi va parfois à l'encontre du sens usuel, à l'absence de représentation graphique ainsi qu'à un processus de preuve formelle pour lequel ils n'ont été jusque-là que peu entraînés.
For university or college students, the learning of abstract algebra seems to involve a multitude of conceptual innovations. To better understand the reasons for the high failure rate in abstract algebra courses, we have aimed at identifying the obstacles or difficulties encountered and grouped them into four families. Based on an example from an introductory sequence in abstract algebra, we will show that in addition to having to reach an unprecedented level of abstraction, students, often for the first time in their mathematical instruction, have to face simultaneously an axiomatic theory developed with essential type definitions that seem to go against the usual meaning, a lack of graphical representation as well as a process of formal proof for which they had little to no training.