Un modèle rétroactif de réconciliation utilité-confidentialité sur les données d’assurance
Thesis or Dissertation
2016-04 (degree granted: 2016-09-28)
Author(s)
Level
Master'sDiscipline
InformatiqueKeywords
- Partage confidentiel de données
- Gestion de la confidentialité
- Données d’assurance
- Mesure de l’utilité d’un ensemble de données anonymisé
- Privacy-preserving data sharing
- Confidentiality management
- Insurance data
- Utility measures for anonymized datasets
- Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Abstract(s)
Le partage des données de façon confidentielle préoccupe un bon nombre d’acteurs, peu importe le domaine. La recherche évolue rapidement, mais le manque de solutions adaptées à la réalité d’une entreprise freine l’adoption de bonnes pratiques d’affaires quant à la protection des renseignements sensibles.
Nous proposons dans ce mémoire une solution modulaire, évolutive et complète nommée PEPS, paramétrée pour une utilisation dans le domaine de l’assurance. Nous évaluons le cycle entier d’un partage confidentiel, de la gestion des données à la divulgation, en passant par la gestion des forces externes et l’anonymisation. PEPS se démarque du fait qu’il utilise la contextualisation du problème rencontré et l’information propre au domaine afin de s’ajuster et de maximiser l’utilisation de l’ensemble anonymisé. À cette fin, nous présentons un algorithme d’anonymat fortement contextualisé ainsi que des mesures de performances ajustées aux analyses d’expérience. Privacy-preserving data sharing is a challenge for almost any enterprise nowadays, no matter their field of expertise. Research is evolving at a rapid pace, but there is still a lack of adapted and adaptable solutions for best business practices regarding the management and sharing of privacy-aware datasets.
To this problem, we offer PEPS, a modular, upgradeable and end-to-end system tailored for the need of insurance companies and researchers. We take into account the entire cycle of sharing data: from data management to publication, while negotiating with external forces and policies. Our system distinguishes itself by taking advantage of the domain-specific and problem-specific knowledge to tailor itself to the situation and increase the utility of the resulting dataset. To this end, we also present a strongly contextualised privacy algorithm and adapted utility measures to evaluate the performance of a successful disclosure of experience analysis.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.