On Recurrent and Deep Neural Networks
Thesis or Dissertation
2014-05 (degree granted: 2015-02-18)
Author(s)
Advisor(s)
Level
DoctoralDiscipline
InformatiqueKeywords
- Apprentissage profond
- Memoire
- Gradient naturel
- Reseaux de neurones
- Optimisation
- Reseaux de neurones recurrents
- Methodes du second ordre
- Apprentissage supervise
- Deep learning
- Memory
- Natural gradient
- Optimization
- Recurrent neural networks
- Second order methods
- Supervised learning
- Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Abstract(s)
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions. Deep Learning is a quickly growing area of research in machine learning, providing impressive results on different tasks ranging from image classification to speech and language modelling. In particular, a subclass of deep models, recurrent neural networks, promise even more. Recurrent models can capture the temporal structure in the data. They can learn correlations between events that might be far apart in time and, potentially, store information for unbounded amounts of time in their innate memory. In this work we first focus on understanding why depth is useful. Similar to other published work, our results prove that deep models can be more efficient at expressing certain families of functions compared to shallow models. Different from other work, we carry out our theoretical analysis on deep feedforward networks with piecewise linear activation functions, the kind of models that have obtained state of the art results on different classification tasks. The second part of the thesis looks at the learning process. We analyse a few recently proposed optimization techniques, including Hessian Free Optimization, natural gradient descent and Krylov Subspace Descent. We propose the framework of generalized trust region methods and show that many of these recently proposed algorithms can be viewed from this perspective. We argue that certain members of this family of approaches might be better suited for non-convex optimization than others. The last part of the document focuses on recurrent neural networks. We start by looking at the concept of memory. The questions we attempt to answer are: Can recurrent models exhibit unbounded memory? Can this behaviour be learnt? We show this to be true if hints are provided during learning. We explore, afterwards, two specific difficulties of training recurrent models, namely the vanishing gradients and exploding gradients problem. Our analysis concludes with a heuristic solution for the exploding gradients that involves clipping the norm of the gradients. We also propose a specific regularization term meant to address the vanishing gradients problem. On a toy dataset, employing these mechanisms, we provide anecdotal evidence that the recurrent model might be able to learn, with out hints, to exhibit some sort of unbounded memory. Finally we explore the concept of depth for recurrent neural networks. Compared to feedforward models, for recurrent models the meaning of depth can be ambiguous. We provide several ways in which a recurrent model can be made deep and empirically evaluate these proposals.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.