Problèmes de tournées de véhicules avec contraintes de chargement
Thesis or Dissertation
2014-02 (degree granted: 2014-05-01)
Author(s)
Level
DoctoralDiscipline
InformatiqueKeywords
- Problème de tournées de véhicules
- contraintes de chargement
- objets en deux-dimensions stochastiques
- méthode L-shaped
- Vehicle Routing Problem
- Loading constraints
- Stochastic two-dimensional items
- L-shaped method
- Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Abstract(s)
Cette thèse s’intéresse aux problèmes de tournées de véhicules où l’on retrouve des contraintes de chargement ayant un impact sur les séquences de livraisons permises. Plus particulièrement, les items placés dans l’espace de chargement d’un véhicule doivent être directement accessibles lors de leur livraison sans qu’il soit nécessaire de déplacer d’autres items. Ces problèmes sont rencontrés dans plusieurs entreprises de transport qui livrent de gros objets (meubles, électroménagers).
Le premier article de cette thèse porte sur une méthode exacte pour un problème de confection d’une seule tournée où un véhicule, dont l’aire de chargement est divisée en un certain nombre de piles, doit effectuer des cueillettes et des livraisons respectant une contrainte de type dernier entré, premier sorti. Lors d’une collecte, les items recueillis doivent nécessairement être déposés sur le dessus de l’une des piles. Par ailleurs, lors d’une livraison, les items doivent nécessairement se trouver sur le dessus de l’une des piles. Une méthode de séparation et évaluation avec plans sécants est proposée pour résoudre ce problème.
Le second article présente une méthode de résolution exacte, également de type séparation et évaluation avec plans sécants, pour un problème de tournées de véhicules avec chargement d’items rectangulaires en deux dimensions. L’aire de chargement des véhicules correspond aussi à un espace rectangulaire avec une orientation, puisque les items doivent être chargés et déchargés par l’un des côtés. Une contrainte impose que les items d’un client soient directement accessibles au moment de leur livraison.
Le dernier article aborde une problème de tournées de véhicules avec chargement d’items rectangulaires, mais où les dimensions de certains items ne sont pas connus avec certitude lors de la planification des tournées. Il est toutefois possible d’associer une distribution de probabilités discrète sur les dimensions possibles de ces items. Le problème est résolu de manière exacte avec la méthode L-Shape en nombres entiers. In this thesis, we study mixed vehicle routing and loading problems where a constraint is imposed on delivery sequences. More precisely, the items in the loading area of a vehicle must be directly accessible, without moving any other item, at delivery time. These problems are often found in the transportation of large objects (furniture, appliances).
The first paper proposes a branch-and-cut algorithm for a variant of the single vehicle pickup and delivery problem, where the loading area of the vehicle is divided into several stacks. When an item is picked up, it must be placed on the top of one of these stacks. Conversely, an item must be on the top of one of these stacks to be delivered. This requirement is called “Last In First Out” or LIFO constraint.
The second paper presents another branch-and-cut algorithm for a vehicle routing and loading problem with two-dimensional rectangular items. The loading area of the vehicles is also a rectangular area where the items are taken out from one side. A constraint states that the items of a given customer must be directly accessible at delivery time.
The last paper considers a stochastic vehicle routing and loading problem with two- dimensional rectangular items where the dimensions of some items are unknown when the routes are planned. However, it is possible to associate a discrete probability distribution on the dimensions of these items. The problem is solved with the Integer L-Shaped method.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.